

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER :

(客戶):志盛翔

DATE: (日期):2017-12-04

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: GF $10V680\mu F(\phi 8x12)$
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPL	IER	CUST	FOMER
PREPARED (拟定)	CHECKED (审核)	APPROVAL (批准)	SIGNATURE (签名)
李婷	刘渭清		

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

	SPECIFICATION					ALTERN	ATION HIS	STORY
D	D (GF SI			0 4 4			
Rev.	Date	Mark		ge	Contents	Purpose	Drafter	Approver
	Version		01				Page 1	

COMPANY LIMIT	DNICS TED		CA SPEC	CTROLY PACITO CIFICAT F SERIES	R ION			S	AMX	ON		
Sable 1 Product Dimensi	ions and	Characteristic	s									
Safety vent for $\geq \Phi 6.3$							Unit:	mm				
	15 min	$d \pm 0.05$		ΦD ⁺ _{-0.5}	- ↓ F±0.5				⊅D≥20: f		e flat	
N SAMXON o. Part No.	WV Ca (Vdc) (p. μF) Cap. tolerance	Temp. range(℃)	tanδ (120Hz, 20℃)	Leakage Current (µA,2min)	Max Ripple Current at 105℃ 100kHz (mA rms)	Impedance at 20°C 100kHz (Ωmax)	Load lifetime (Hrs)	Dir D×L	nension (mm) F	n фd	Sleev
		0 -20%~+20%	-40~105	0.19	68	640	0.130	3000	8X12	3.5	0.5	e

Version 01 Page 2

Application	Sheet
Application	4
Part Number System	4
Construction	5
Characteristics	5~10
Rated voltage & Surge voltage	5 10
2 Capacitance (Tolerance)	
3 Leakage current	
4 $\tan \delta$	
5 Terminal strength	
6 Temperature characteristic	
7 Load life test	
.8 Shelf life test	
.9 Surge test	
.10 Vibration	
.11 Solderability test	
.12 Resistance to solder heat	
.13 Change of temperature	
.14 Damp heat test	
15 Vent test	
16 Maximum permissible (ripple current) List of "Environment-related Substances to be Controlled ('Controlled	
Substances')"	11
Attachment: Application Guidelines	12~15
Automication and and and and and and and and and an	14 13

	Version	01		Page	3	
--	---------	----	--	------	---	--

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

Part Number System 2. 4 5 6 7 89 101112 1314 123 1516 17 тс Ρ EGS 1 н D11 S 0 5 м 1 TOL SAMXON SLEEVE PRODUCT LINE MATERIAL SERIES CAPACITANCE VOLTAGE CASE SIZE TYPE Cap(MFD) Tolerance (%) Code Code Voltage (W.V.) Code Case Size Feature Code SAMXON Product Lin ries ESM EKF ESS EKS EGS EKM EKG EOM EZM EZS 0D (4) Co RR For internal use only 3 B .5 1 4 C Radial bulk 0.1 104 ± 5 J 2.5 0E (The product lines 4 0G we have H.A.B.C.D. Ammo Taping 0.22 224 6.3 OJ к E,M or 0,1,2,3,4,5,9) ±10 0K 8 0.33 334 2.0mm Pitch тτ 10 1A 10 G 12.5 I 13.3 J 13.5 V 14.4 4 14.5 A 16.5 7 18.5 8 20 M 225 O 300 P 255 O 304 W 335 Q 40 R 422 4 ±15 L 12.5 1B 2.5mm Pitch τu 0.47 474 1C 16 EGI м 20 1D ±20 105 3.5mm Pitch тν Sleeve Material 1 Cod 듣증 25 EGK EGE EGD 1E тс PET Р 30 11 5.0mm Pitch 2.2 225 Ν ±30 32 13 Lead Cut & Form 35 ERS 3.3 335 1V -40 w ERF Z2 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 3.5 T 76 U 80 8 90 X 00 Z 40 1G СВ-Туре СВ 42 4.7 475 1**M** -20 0 А ER 50 1H ERI СЕ-Туре CE 10 106 57 1L ERD -20 +10 С 63 1J HE HE-Type 45 51 33.5 76 80 90 100 22 226 71 **1**S ER. 75 1**T** 6 -20 +40 ERE × KD-Type ĸD 336 ERC EFA ENP 33 80 1K 85 1R -20 +50 FD-Type FD s 47 476 90 19 ENH 100 2A 4.5 5 455 5 065 5 06 4 54 7 07 7 77 7 77 2 T2 1 11 5 1A 2 12 5 1B 3 13 3 13 5 1C 0 200 5 25 5 25 5 25 5 23 0 30 5 3A 5 35 5 5 35 -10 0 ЕН-Туре EΗ в 107 100 120 20 5.4 EAP EQP EDP 125 2B PCB Termial 227 -10 +20 220 v 150 2Z 160 2C 10 ETP EHP EUP EKP EEP sw -10 +30 330 337 Q 180 2P 11.5 200 2D Snap-in sx 12 2.5 13 3.5 477 470 12 -10 +50 215 22 т 13.L 20 2; EFF 220 2N sz 2200 228 23 -5 +10 230 EVP EGP EWR EWU EWT EWS EWF EWS EWH EWL EWB VSS Е 250 2E Lug SG 29.5 22000 229 -5 +15 275 2Т F 3 300 21 05 33000 339 -5 +20 310 2R 35 G 50 80 1L 1K 1M 1P 06 315 2F 47000 479 330 2U 0 +20 R Т5 350 2V 100000 10T Screw 360 2X 0 +30 0 т6 VNS VKS VKM VRL VRL 375 2Q 150000 15T 40 10 1R 1E 1S 1F 1T 1U 1V 0 +50 385 2Y I. D5 2G 400 220000 22T +5 +15 420 2M z D6 VZS 450 2W 330000 ззт +5 +20 D 500 2H 550 25 1000000 10M +10+50 Y 600 26 2J 1500000 15M 630 +10 +30 н 2200000 22M 3300000 33M 5

Version

01

Page

4

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature	$: 20^{\circ}C \pm 2^{\circ}C$
Relative humidity	: 60% to 70%
Air Pressure	: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2.

Version	01		5
		U	

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

e 2				DEDEO	DIGING	15					
ПЕМ	PEKFUKMANCE										
Rated voltage (WV)	WV (V DC)	63	10	16	25	35	50	63	80		
	. ,								100		
Surge voltage (SV)	57 (1.20)		15	20	52		05		100		
Nominal capacitance (Tolerance)	Measuring F Measuring V Measuring T <criteria></criteria>	requency oltage `emperat	: N ure : 20	ot more t $\pm 2^{\circ}C$	han 0.5V						
Leakage current	Connecting t minutes, and <criteria></criteria>	he capao then, me		-		istor (1	$k\Omega \pm 10$)Ω) in s	eries for 2		
tan δ	See 4.2, Norr	m Capac	itance, fo	or measur	ring frequ	iency, vo	ltage and	d tempera	iture.		
Terminal strength	Tensile Str Fixed the c seconds. Bending Str Fixed the ca 90° within 2 seconds. Diamet 0.5r	ength of capacitor rength of apacitor, 2~3 seco rer of lea mm and l	, applied f Termina applied f nds, and d wire ess	force to als. Force to b then ber Tens	ent the te t it for 9 ile force (kgf) 5(0.51)	rminal (1 0° to its	l~4 mm t original j Bending (kj 2.5 (from the position v g force N gf) 0.25)	rubber) for		
	voltage (WV) Surge voltage (SV) Nominal capacitance (Tolerance) Leakage current tan δ	Rated voltage (WV)WV (V.DC)Surge voltage (SV) $WV (V.DC)$ Surge voltage (SV) $SV (V.DC)$ Nominal capacitance (Tolerance) $< Condition >$ Measuring T Measuring T Measuring T Measuring T Measuring T Shall be withLeakage current $< Condition >$ Connecting t minutes, and $< Criteria >$ Refer to TableLeakage current $< Condition >$ Connecting t minutes, and $< Criteria >$ Refer to TableLan δ $< Condition >$ See 4.2, Nor See 3.2, Nor See 3.	Rated voltage (WV) $WV (V.DC)$ 6.3 WV (V.DC) 6.3 Surge voltage (SV) $SV (V.DC)$ 8 Nominal capacitance (Tolerance) $< Condition>$ Measuring Temperat Measuring Temperat Shall be within the spLeakage current $< Condition>$ Connecting the capac minutes, and then, me $< Criteria>$ Refer to Table 1Leakage current $< Condition>$ See 4.2, Norm Capac Refer to Table 1tan δ $< Condition>$ See 4.2, Norm Capac Refer to Table 1tan δ $< Condition>$ See 4.2, Norm Capac Refer to Table 1tan δ $< Condition>$ Fixed the capacitor seconds. Bending Strength of Fixed the capacitor, 90° within 2~3 seconds. Terminal strength	Rated voltage (WV) $WV (V.DC)$ 6.310 $WV (V.DC)$ 6.3 10 $SV (V.DC)$ 8 13 Surge voltage (SV) 8 13 Nominal capacitance (Tolerance) $< Condition>$ Measuring Temperature : 20 (Criteria> Shall be within the specified ca Shall be within the specified ca Connecting the capacitor with minutes, and then, measure Le (Criteria> Refer to Table 1Leakage current $< Condition>$ Connecting the capacitor with minutes, and then, measure Le (Criteria> Refer to Table 1tan δ $< Condition>$ See 4.2, Norm Capacitance, for Refer to Table 1tan δ $< Condition>$ Tensile Strength of Termina Fixed the capacitor, applied seconds. Bending Strength of Termina Fixed the capacitor, applied field seconds. Bending Strength of Termina Fixed the capacitor, applied field seconds.TerminalDiameter of lead wire	Rated voltage (WV)WV (V.DC) 6.3 10 16 SUrge voltage (SV)SV (V.DC) 8 13 20 Surge voltage (SV)SV (V.DC) 8 13 20 Nominal capacitance (Tolerance) 10 16 Nominal capacitance (Tolerance) 120 120 Leakage current 120 120 Leakage current 120 120 Leakage current 120 Condition> Connecting the capacitor with a prote minutes, and then, measure Leakage Cu <	Rated voltage (WV)WV (V.DC)6.3101625SV (V.DC)8132032Surge voltage (SV)SV (V.DC)8132032Nominal capacitance (Tolerance)Measuring Frequency : 120Hz \pm 12Hz Measuring Voltage : Not more than 0.5V Measuring Temperature : $20 \pm 2^{\circ}$ Leakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentLeakage currentCondition> See 4.2, Norm Capacitance, for measuring frequencetan δ <td>Rated voltage (WV)WV (V.DC)6.310162535SV (V.DC)813203244Surge voltage (SV)Surge voltage (SV)Surge Measuring Frequency : 120Hz \pm 12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : $20 \pm 2^{\circ}C$Nominal capacitance (Tolerance)<condition></condition> Connecting the capacitor with a protective resistor (1 minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1Leakage current<condition></condition> See 4.2, Norm Capacitance, for measuring frequency, vol See 4.2, Norm Capacitance, for measuring frequency, vol See 4.2, Norm Capacitance, for the terminal in 1 seconds. Bending Strength of Terminals Fixed the capacitor, applied force to the terminal (1 90° within 2-3 seconds, and then bent it for 90° to its seconds.Terminal strengthDiameter of lead wireTensile force N (kgf)</td> <td>Rated voltage (WV)WV (V.DC)6.31016253550WV (V.DC)81320324463Surge voltage (SV)SV (V.DC)81320324463Nominal capacitance (Tolerance)Surge measuring Frequency : 120Hz \pm 12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : $20 \pm 2^{\circ}$CCondition> (Tolerance)<</td> <td>Rated voltage (WV)WV (V.DC)6.3101625355063Surge voltage (SV)\overline{SV} (V.DC)$\overline{8}$132032446379Surge voltage (SV)$\overline{8}$132032446379Nominal capacitance (Tolerance)$\overline{Condition>}$ Measuring Temperature : $20\pm 2^{\circ}C$$\overline{Criteria>}$ Shall be within the specified capacitance tolerance.Leakage current$\overline{Condition>}$ Connecting the capacitor with a protective resistor ($1k \Omega \pm 10 \Omega$) in seminutes, and then, measure Leakage Current.Leakage current$\overline{Condition>}$ Refer to Table 1tan $\delta$$\overline{Condition>}$ Tensile Strength of Terminals Fixed the capacitor, applied force to the terminal in lead out direction seconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the terminal ($1-4$ mm from the 1 90° within 2~3 seconds, and then bent it for 90° to its original position or seconds.Terminal strength$\overline{Diameter of lead wire}$$\overline{Tensile force N}$ Rending force N (kgf)</td>	Rated voltage (WV)WV (V.DC)6.310162535SV (V.DC)813203244Surge voltage (SV)Surge voltage (SV)Surge Measuring Frequency : 120Hz \pm 12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : $20 \pm 2^{\circ}C$ Nominal capacitance (Tolerance) <condition></condition> Connecting the capacitor with a protective resistor (1 minutes, and then, measure Leakage Current. <criteria></criteria> Refer to Table 1Leakage current <condition></condition> See 4.2, Norm Capacitance, for measuring frequency, vol See 4.2, Norm Capacitance, for measuring frequency, vol See 4.2, Norm Capacitance, for the terminal in 1 seconds. Bending Strength of Terminals Fixed the capacitor, applied force to the terminal (1 90° within 2-3 seconds, and then bent it for 90° to its seconds.Terminal strengthDiameter of lead wireTensile force N (kgf)	Rated voltage (WV)WV (V.DC)6.31016253550WV (V.DC)81320324463Surge voltage (SV)SV (V.DC)81320324463Nominal capacitance (Tolerance)Surge measuring Frequency : 120Hz \pm 12Hz Measuring Voltage : Not more than 0.5Vrms Measuring Temperature : $20 \pm 2^{\circ}$ CCondition> (Tolerance)<	Rated voltage (WV)WV (V.DC)6.3101625355063Surge voltage (SV) \overline{SV} (V.DC) $\overline{8}$ 132032446379Surge voltage (SV) $\overline{8}$ 132032446379Nominal capacitance (Tolerance) $\overline{Condition>}$ Measuring Temperature : $20\pm 2^{\circ}C$ $\overline{Criteria>}$ Shall be within the specified capacitance tolerance.Leakage current $\overline{Condition>}$ Connecting the capacitor with a protective resistor ($1k \Omega \pm 10 \Omega$) in seminutes, and then, measure Leakage Current.Leakage current $\overline{Condition>}$ Refer to Table 1tan δ $\overline{Condition>}$ Tensile Strength of Terminals Fixed the capacitor, applied force to the terminal in lead out direction seconds. Bending Strength of Terminals. Fixed the capacitor, applied force to bent the terminal ($1-4$ mm from the 1 90° within 2~3 seconds, and then bent it for 90° to its original position or seconds.Terminal strength $\overline{Diameter of lead wire}$ $\overline{Tensile force N}$ Rending force N (kgf)		

Version	01	rage	6
		•	

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

		<condition></condition>								
		STEP	Testi	ng Tempe	erature(°C)			Time		
		1		20 ± 2	2	Time	to reach	thermal	equilibri	um
		2		-40(-25)	± 3	Time	to reach	thermal	equilibriu	ım
		3		20 ± 2	2	Time	to reach	thermal (equilibri	um
		4		$105 \pm$	2	Time	to reach	thermal	equilibriu	ım
		5		20 ± 2	2	Time	to reach	thermal	equilibri	um
		<criteria></criteria>								
		a. tan δ shall	be with	in the lim	it of Item	4.4The l	eakage cu	irrent me	easured s	hall not
		more than 8 ti	mes of i	its specific	ed value.		C C			
	Temperature	b. In step 5, t	an δ sha	all be with	hin the lin	it of Iter	n 4.4The	leakage	current	shall not
4.6	characteristi cs	more than the	-							
4.0	68	c. At-40°C (-2	25℃), ii	mpedance	e (z) ratio s	hall not	exceed th	e value	of the fol	lowing
		table.		1	, ,		1	1	1	1
		Working Volta		6.3	10	16	25	35	50	63
		Z-25°C/Z+2		4	3	2	2	2	2	2
		Z-40°C/Z+2	0°C	8	6	4	3	3	3	3
		Working Volta	oe (V)	80	1					
		$Z-25^{\circ}C/Z+2$		2						
		$Z-40^{\circ}C/Z+2$		3						
		For capacitance		-] F 4dd 04	ner and	ther 1000) II F for	7_25/7+	20°C
		i or capacitane	e value	> 1000 F		-) F I 101		
					Add 1 (per ano	ther 1000	u F for	Z-40°C/7	Z+20℃
		Capacitance, ta	nδ, an	d impedar		-			Z-40°C/Z	Z+20℃.
		Capacitance, ta	\mathbf{n}^{δ} , and	d impedar		-			Z-40°C/2	Z+20℃.
		<condition></condition>		-	nce shall b	e measur	red at 120	Hz.		
		<condition> According to I</condition>	EC6038	34-4No.4.	nce shall b	e measur	red at 120 apacitor is	Hz.	at a temp	erature c
		<pre><condition> According to I 105°C ± 2 wit</condition></pre>	EC6038 h DC bi	34-4No.4. as voltage	nce shall b 13 method e plus the r	s, The ca	red at 120 apacitor is le current	Hz. s stored a t for Tab	at a temp ble 1. (T	erature c he sum c
		<condition> According to I</condition>	EC6038 h DC bi	34-4No.4. as voltage voltage sl	nce shall b 13 method e plus the r nall not ex	s, The ca ated ripp	red at 120 apacitor is le current e rated w	Hz. s stored a t for Tab orking	at a temp ble 1. (The voltage)	erature o he sum o Then th
	Load	Condition> According to I 105°C ±2 wit DC and ripple	EC6038 h DC bi e peak	34-4No.4. as voltage voltage sl ed after 10	13 method 13 method e plus the r nall not ex 6 hours rec	s, The ca ated ripp	red at 120 apacitor is le current e rated w	Hz. s stored a t for Tab orking	at a temp ble 1. (The voltage)	erature o he sum o Then th
4.7	Load life	Condition> According to I 105°C ±2 wit DC and ripple product should result should n <criteria></criteria>	EC6038 h DC bi e peak l be test neet the	34-4No.4. as voltage voltage sl ed after 10 following	13 method 13 method e plus the r nall not ez 6 hours rec g table:	s, The ca ated ripp acceed the overing	npacitor is npacitor is le current e rated w time at at	Hz. s stored a t for Tab orking	at a temp ble 1. (The voltage)	erature o he sum o Then th
4.7		Condition> According to I 105°C ± 2 wit DC and ripple product should result should n <criteria> The character</criteria>	EC6038 h DC bi e peak l be test neet the	34-4No.4. as voltage voltage sl ed after 16 following <u>ll meet th</u>	13 method e plus the r hall not ex 6 hours rec g table: e followin	s, The ca ated ripp acceed the overing g require	ed at 120 apacitor is le currente e rated w time at at	Hz. s stored a t for Tab orking v mospher	at a temp ble 1. (The voltage)	erature o he sum o Then th
4.7	life	Condition> According to I 105°C ±2 wit DC and ripple product should result should n <criteria> The character Leakage</criteria>	EC6038 h DC bi e peak l be test neet the istic sha e curren	34-4No.4. as voltage voltage sl ed after 10 following 11 meet th t	13 method 13 method e plus the r nall not ex 6 hours rec g table: <u>e followin</u> Value in	e measures, The ca ated ripp acceed the overing g requires 4.3 shall	ed at 120 apacitor is le current e rated w time at at ements. be satisfi	Hz. s stored a t for Tab vorking mospher	at a temp ble 1. (The voltage)	erature o he sum o Then th
4.7	life	$<$ Condition>According to I105°C ± 2 witDC and rippleproduct shouldresult should n $<$ Criteria>The characterLeakageCapacit	EC6038 h DC bi e peak l be test neet the istic sha e curren	34-4No.4. as voltage voltage sl ed after 10 following 11 meet th t	13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>+</u>	s, The ca ated ripp acceed the overing g require 4.3 shall 25% of	ed at 120 apacitor is le current e rated w time at at ements. be satisfi	Hz. s stored a t for Tab rorking mospher ied	at a temp ble 1. (TI voltage) ic condit	erature o he sum o Then th
4.7	life	Condition> According to I 105°C ±2 wit DC and ripple product should result should n <criteria> The character Leakage</criteria>	EC6038 h DC bi e peak l be test neet the istic sha e curren	34-4No.4. as voltage voltage sl ed after 10 following 11 meet th t	13 method 13 method e plus the r nall not ex 6 hours rec g table: <u>e followin</u> Value in	s, The ca ated ripp acceed the overing g require 4.3 shall 25% of	ed at 120 apacitor is le current e rated w time at at ements. be satisfi	Hz. s stored a t for Tab rorking mospher ied	at a temp ble 1. (TI voltage) ic condit	erature o he sum o Then th
4.7	life	$<$ Condition>According to I105°C ± 2 witDC and rippleproduct shouldresult should result s	EC6038 h DC bi e peak l be test neet the istic sha e curren cance Ch	34-4No.4. as voltage voltage sl ed after 10 following 11 meet th t	13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>+</u>	e measures, The ca ated ripp acceed the overing g requires 4.3 shall 25% of than 15	ed at 120 apacitor is le current e rated w time at at ments. be satisfi initial va 0% of the	Hz. s stored a t for Tab vorking v mospher ded ilue. specific	at a temp ble 1. (T voltage) ic condit	erature o he sum o Then th
4.7	life	$<$ Condition>According to I105°C ± 2 withDC and rippleproduct shouldresult should result should result should result should $<$ Criteria>The characteriaLeakageCapacitittan δ Appear	EC6038 h DC bi e peak l be test neet the istic sha e curren cance Ch	34-4No.4. as voltage voltage sl ed after 10 following 11 meet th t	13 method e plus the r hall not ex 6 hours rec g table: e followin Value in Within <u>+</u> Not more	e measures, The ca ated ripp acceed the overing g requires 4.3 shall 25% of than 15	ed at 120 apacitor is le current e rated w time at at ments. be satisfi initial va 0% of the	Hz. s stored a t for Tab vorking v mospher ded ilue. specific	at a temp ble 1. (T voltage) ic condit	erature o he sum o Then th
4.7	life	<condition>According to I105°C ± 2 withDC and rippleproduct should result shoul</condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch	34-4No.4. as voltage voltage sl ed after 10 following ll meet th tt nange	13 method e plus the r hall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no	ed at 120 apacitor is le currente e rated w time at at <u>ements.</u> be satisfi initial va <u>0% of the</u> leakage of	eHz. s stored a t for Tab orking v mospher ied ilue. specific of electro	at a temp ole 1. (TI voltage) ric condit ed value.	erature of he sum of Then th ions. Th
4.7	life	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct should result sh</condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance	84-4No.4. as voltage voltage sl ed after 10 following Il meet th tt nange stored wi	13 method e plus the r hall not er 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 all be no	ed at 120 upacitor is le current e rated w time at at ments. be satisfi initial va 0% of the leakage c	Hz. s stored a t for Tak vorking v mospher ied ilue. specific of electro	at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105	erature of the sum of Then th tions. Th $\pm 2^{\circ}\mathbb{C}$ fo
4.7	life	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct should result the result should result should result the result should result the result should result the result should result should result the result should result the result should result should result the result should result the result should result should result should result should result should result the result should result the result should result shou</condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance are then urs. Foll	84-4No.4. as voltage voltage sl ed after 10 following 11 meet th tt nange stored wi lowing th	13 method e plus the r nall not ex 6 hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 than 15 all be no	ed at 120 apacitor is le current e rated w time at at <u>ements.</u> <u>be satisfi</u> <u>initial va</u> <u>0% of the</u> <u>leakage c</u> ed at a ten itors shall	Hz. s stored a t for Tab yorking y mospher ied ilue. specifie of electro mperatur l be remo	at a temp ble 1. (T) voltage) ic condit ed value. blyte. re of 105 oved from	erature of the sum of Then th tions. Th $\pm 2^{\circ}C$ for m the tes
4.7	life test	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should in<criteria>The characteriaLeakageCapacititan δAppear<condition>The capacitors1000+48/0 horchamber and b</condition></criteria></condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance are then urs. Follow	34-4No.4. as voltage sl ed after 10 following <u>ll meet th</u> tt nange stored wi lowing thi yed to stal	th no volta is period th	s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 all be no ge appli- ne capac room ter	ed at 120 apacitor is le current e rated w time at at ments. <u>be satisfi</u> <u>initial va</u> <u>0% of the</u> <u>leakage c</u> ed at a ten itors shall apperature	Hz. s stored a t for Tab yorking y mospher ied ilue. specific of electro mperatur l be remo for 4~8	at a temp ble 1. (T voltage) ic condit ed value. blyte. re of 105 oved from hours. 1	erature of he sum of Then th ions. Th $\pm 2^{\circ}C$ for m the tes Next the
	life test Shelf	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct should result sh</condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance Ch ance are then urs. Follow ected to	84-4No.4. as voltage voltage sl ed after 10 following ll meet th tt nange stored wi lowing thi yed to stal a series	13 method e plus the r hall not ex b hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at the share	e measur s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no age applic the capac coom ter esistor(11	ed at 120 apacitor is le currente e rated w time at at ments. be satisfic initial va 0% of the leakage of ed at a ten itors shall mperature $x \pm 100 \Omega$	eHz. s stored a t for Tab yorking y mospher ded alue. specific of electro l be rema for 4~8) with I	at a temp ple 1. (T) voltage) tic condit ed value. olyte. re of 105 oved from thours. 1 D.C. rate	erature of he sum of Then th ions. Th $\pm 2^{\circ}C$ for m the tess Next the d voltag
4.7	life test	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct shouldresult should in<criteria>The characteriaLeakageCapacititan δAppear<condition>The capacitors1000+48/0 horchamber and b</condition></criteria></condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance are then urs. Foll be allow ected to min. Af	84-4No.4. as voltage voltage sl ed after 10 following ll meet th tt nange stored wi lowing thi yed to stal a series	13 method e plus the r hall not ex b hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at the share	e measur s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no age applic the capac coom ter esistor(11	ed at 120 apacitor is le currente e rated w time at at ments. be satisfic initial va 0% of the leakage of ed at a ten itors shall mperature $x \pm 100 \Omega$	eHz. s stored a t for Tab yorking y mospher ded alue. specific of electro l be rema for 4~8) with I	at a temp ple 1. (T) voltage) tic condit ed value. olyte. re of 105 oved from thours. 1 D.C. rate	erature of he sum of Then th ions. Th $\pm 2^{\circ}C$ for m the tess Next the d voltag
	life test Shelf life	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct should result the character result should result to result should result to result to result should result to result should result to result to result should result to result should result to result t</condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance are then urs. Foll be allow ected to min. Af	84-4No.4. as voltage voltage sl ed after 10 following ll meet th tt nange stored wi lowing thi yed to stal a series	13 method e plus the r hall not ex b hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at the share	e measur s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no age applic the capac coom ter esistor(11	ed at 120 apacitor is le currente e rated w time at at ments. be satisfic initial va 0% of the leakage of ed at a ten itors shall mperature $x \pm 100 \Omega$	eHz. s stored a t for Tab yorking y mospher ded alue. specific of electro l be rema for 4~8) with I	at a temp ple 1. (T) voltage) tic condit ed value. olyte. re of 105 oved from thours. 1 D.C. rate	erature of he sum of Then th ions. Th $\pm 2^{\circ}C$ for m the tess Next the d voltag
	life test Shelf life	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct should result the character result should result to result should result to result to result should result to result should result to result to result should result to result should result to result t</condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance are then urs. Foll be allow ected to min. Af	84-4No.4. as voltage voltage sl ed after 10 following ll meet th tt nange stored wi lowing thi yed to stal a series	13 method e plus the r hall not ex b hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at the share	e measur s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no age applic the capac coom ter esistor(11	ed at 120 apacitor is le currente e rated w time at at ments. be satisfic initial va 0% of the leakage of ed at a ten itors shall mperature $x \pm 100 \Omega$	eHz. s stored a t for Tab yorking y mospher ded alue. specific of electro l be rema for 4~8) with I	at a temp ple 1. (T) voltage) ic condit ed value. olyte. re of 105 oved from hours. 1 D.C. rate	erature of he sum of Then th ions. Th $\pm 2^{\circ}C$ for m the tess Next the d voltag
	life test Shelf life	<condition>According to I$105^{\circ}C \pm 2$ withDC and rippleproduct should result the character result should result to a shall be connected applied for 300</condition>	EC6038 h DC bi e peak l be test neet the istic sha e curren ance Ch ance are then urs. Foll be allow ected to min. Af	84-4No.4. as voltage voltage sl ed after 10 following ll meet th tt nange stored wi lowing thi yed to stal a series	13 method e plus the r hall not ex b hours rec g table: <u>e followin</u> Value in Within <u>±</u> Not more There sha th no volta is period th bilized at the share	e measur s, The ca ated ripp acceed the overing <u>g require</u> 4.3 shall 25% of than 15 ill be no age applic the capac coom ter esistor(11	ed at 120 apacitor is le currente e rated w time at at ments. be satisfic initial va 0% of the leakage of ed at a ten itors shall mperature $x \pm 100 \Omega$	eHz. s stored a t for Tab yorking y mospher ded alue. specific of electro l be rema for 4~8) with I	at a temp ple 1. (T) voltage) ic condit ed value. olyte. re of 105 oved from hours. 1 D.C. rate	erature of he sum of Then th ions. Th $\pm 2^{\circ}C$ for m the tess Next the d voltag

Version	01	Page	7

		<criteria></criteria>	
		The characteristic shall meet	
	C1 10	Leakage current	Value in 4.3 shall be satisfied
10	Shelf	Capacitance Change	Within $\pm 25\%$ of initial value.
4.8	life test	tan δ	Not more than 150% of the specified value.
	iesi	Appearance	There shall be no leakage of electrolyte.
			stored more than 1 year, the leakage current may
		increase. Please apply voltage	e through about 1 k Ω resistor, if necessary.
4.9	Surge test	The capacitor shall be submit followed discharge of 5 min The test temperature shall b C_R :Nominal Capacitance (<criteria></criteria> Leakage current Capacitance Change tan δ Appearance Attention:	be 15~35℃.
4.10	Vibration test	perpendicular directions. Vibration frequency ra Peak to peak amplitude Sweep rate Mounting method:	all be applied for 2 hours in each 3 mutually unge : 10Hz ~ 55Hz e : 1.5mm : 10Hz ~ 55Hz ~ 10Hz in about 1 minute greater than 12.5mm or longer than 25mm must be fixed Within 30°

Vargion	01	Dago	Q
version	01	Page	0

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

SAMXON

	гг	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
		<condition></condition>					
		The capacitor shall be tes		conditions:			
		Soldering temperature	: 245±3°C				
	G . 1.1	Dipping depth	: 2mm				
4.11	Solderability	Dipping speed	: 25±2.5mm	n/s			
	test	Dipping time	: 3±0.5s				
		<criteria></criteria>			_		
		Coating quality		n of 95% of the surface being	g		
			immersed				
		<condition></condition>					
		Terminals of the capacito	r shall be immersed int	o solder bath at 260 ± 5 °C for	or $10\pm$		
		1 seconds or $400 \pm 10^{\circ}$ C for	$r3^{+1}$ seconds to 1.5~2.0	mm from the body of capacit	itor		
			•	temperature and normal hum			
	D : ()	for 1~2 hours before mea		temperature and normal num	nany		
4.12	Resistance to solder heat	<pre><criteria></criteria></pre>	surement.				
4.12	test	Leakage current	Not more than t	he specified value.			
	iest			1			
		Capacitance Change	Within ±10%				
		tan δ	Not more than t	he specified value.			
		Appearance	There shall be r	o leakage of electrolyte.			
		<condition></condition>	rding to IEC60294 ANo	17mathada appositor shall	ha		
		placed in an oven, the co		4.7methods, capacitor shall	be		
			emperature	Time			
		(1)+20°C	≤ 3 Minutes				
			ature (-40°C) (-25°C)	30 ± 2 Minutes			
	Change of						
4.13	temperature	(3)Rated high temper	· · · · · ·	30 ± 2 Minutes			
	test	(1) to (3)=1 cycle, to	tal 5 cycle				
		<criteria></criteria>					
		The characteristic shall m					
		Leakage current	Not more than the s	*			
		tan δ	Not more than the s				
		Appearance	There shall be no le	eakage of electrolyte.			
		<condition></condition>					
		Humidity Test:					
				citor shall be exposed for 50			
				$^{\circ}$ C, the characteristic change	shall		
		meet the following requirement.					
		<criteria></criteria>					
4.14	Damp heat	Leakage current		ot more than the specified value.			
	test	Capacitance Change	Within $\pm 20\%$ of init				
		tan δ	Not more than 120% of	-			
		Appearance	There shall be no leak	age of electrolyte.			
L							

Version

01

Page

9

ELECTROLYTIC CAPACITOR SPECIFICATION GF SERIES

4.15	Vent test	$<$ Condition>The following test only apply towith vent.D.C. testThe capacitor is connected withcurrent selected from below tal $<$ Table 3> $\boxed{\text{Diameter (mm)} DC \text{ Cur}}{22.4 \text{ or less} 1}$ $\boxed{\text{Over } 22.4 1}$ $<$ Criteria>The vent shall operate with nopieces of the capacitor and/or capacitor	th its polar ble is appli rent (A) l 0 dangerous	ity reversed ed.	to a DC po	ower source.	Then
4.16	Maximum permissible (ripple	<condition> The maximum permissible rip at 120Hz and can be applied Table-1 The combined value of D.C or rated voltage and shall not re Frequency Multipliers: Coefficient Freq. (Hz) Cap. (μ F) ~180 220~560</condition>	at maximu voltage and	m operating I the peak A	g temperatu	re	eed th
	current)	680~1800 2200~3900 4700	0.60 0.75 0.85	0.87 0.90 0.95	0.95 0.95 0.98	1.00 1.00 1.00	

Version	01	Page	10

SAMXON

5. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).

	Substances
	Cadmium and cadmium compounds
Heavy metals	Lead and lead compounds
Tiedvy metals	Mercury and mercury compounds
	Hexavalent chromium compounds
	Polychlorinated biphenyls (PCB)
Chloinated	Polychlorinated naphthalenes (PCN)
organic	Polychlorinated terphenyls (PCT)
compounds	Short-chain chlorinated paraffins(SCCP)
	Other chlorinated organic compounds
D 1	Polybrominated biphenyls (PBB)
Brominated organic	Polybrominated diphenylethers(PBDE) (including
	decabromodiphenyl ether[DecaBDE])
compounds	Other brominated organic compounds
Tributyltin comp	ounds(TBT)
Triphenyltin com	npounds(TPT)
Asbestos	
Specific azo com	npounds
Formaldehyde	
Beryllium oxide	
Beryllium copp	er
Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)
Hydrofluorocarb	on (HFC), Perfluorocarbon (PFC)
Perfluorooctane	sulfonates (PFOS)
Specific Benzotr	iazole

Version	01		Page	11
---------	----	--	------	----

SAMXON

Attachment: Application Guidelines

1.Circuit Design

- 1.1 Operating Temperature and Frequency Electrolytic capacitor electrical parameters are normally specified at 20°C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.
- (1) Effects of operating temperature on electrical parameters
 a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tand increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid

The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

(2) Capacitors Connected in Series

Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.

- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board.

When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

(4) Clearance for Case Mounted Pressure Relief vents

Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows.

 $\phi 6.3 \text{-} \phi 16 \text{mm:} 2 \text{mm minimum, } \phi 18 \text{-} \phi 35 \text{mm:} 3 \text{mm minimum, } \phi 40 \text{mm or greater:} 5 \text{mm minimum.}$

- (5) Clearance for Seal Mounted Pressure Relief Vents
- A hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.

(

(((

SAMXON

(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high tempera exceeding 100°C may be released which could dissolve the wire insulation and ignite.	ıture gas
(7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.	
(8) Screw Terminal Capacitor Mounting	
Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.	
1.6 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows.	
 Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit part Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths. 	ths
1.7 The Product endurance should take the sample as the standard.	
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.	
1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically in oppositor.	nsulate the
capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperature	s.
CAUTION!	
Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits circuits which could occur during use.	and open
(1) Provide protection circuits and protection devices to allow safe failure modes.(2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.	
2.Capacitor Handling Techniques2.1 Considerations Before Using	
(1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.	
(2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be with a resistor with a value of about $1k\Omega$.	discharged
(3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually rated voltage in series with a resistor of approximately $1k\Omega$.	applying
 (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shorten 	ad life can
result.	
2.2 Capacitor Insertion	
 Verify the correct capacitance and rated voltage of the capacitor. Verify the correct polarity of the capacitor before inserting. 	
(3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.(4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the	seal of the
capacitor. For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.	
 2.3 Manual Soldering (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 °C for 3 seconds or less. 	
(2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacito(3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.(4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.	r seal.
2.4 Flow Soldering	
 (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits. (3) Do not allow other parts or components to touch the capacitor during soldering. 	
2.5 Other Soldering Considerations	

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve. For heat curing, do not exceed 150° C for a maximum time of 2 minutes.

Version 01		Page	13
------------	--	------	----

- 2.6 Capacitor Handling after Solder
- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.
- 2.7 Circuit Board Cleaning
- (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- (2) Avoid using the following solvent groups unless specifically allowed for in the specification;

Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.

- Alkali solvents : could attack and dissolve the aluminum case.
- Petroleum based solvents: deterioration of the rubber seal could result.
- Xylene : deterioration of the rubber seal could result. Acetone
 - : removal of the ink markings on the vinyl sleeve could result.
- (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor. Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100° C temperatures.
- If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water.
 - If electrolyte or gas is ingested by month, gargle with water.
 - If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail. After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes. If the expired date of products date code is over eighteen months, the products should be return to confirmation.

5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

(1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.

(2) Direct contact with water, salt water, or oil.

(3) High humidity conditions where water could condense on the capacitor.

(4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.

(5) Exposure to ozone, radiation, or ultraviolet rays.

(6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise).

Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

Dispose of as solid waste.

NOTE: Local laws may have specific disposal requirements, which must be followed.

Version 01 Page 15
